Congratulations Eesha Khare!

batteries

Another science fair-winner, again a young woman, has caught our attention (click the image to the left to go to the source):

Interest in nanochemistry research and energy storage led 18-year-old Eesha Khare, a senior at Lynbrook High School in San Jose, to develop a supercapacitor that could potentially be used in flexible displays and fabrics.

Her effort won her first prize at the Intel Science Fair and the Project of the Year award in the California State Science Fair’s senior division for 2013.

Khare created a nanorod electrode capacitor with increased electricity density that retained a supercapacitor’s energy density and long life.

“I wanted to see if I could apply my research to a commercial idea,” Khare told TechNewsWorld. There hasn’t been as much research done in the supercapacitor area as there is for batteries and capacitors, so she decided to focus on supercapacitors.

There’s been speculation that the supercapacitor might be able to recharge a cell phone battery rapidly, but “this advancement is not really about charging mobile solutions, it’s about power storage,” said Jim McGregor, principal analyst at Tirias Research. “Perhaps instead of two batteries or cells, you might have a single battery or cell with something like this capacitor to recharge the battery.”

A Thumbnail Sketch of Khare’s Project

Khare designed, synthesized and characterized a core-shell nanorod electrode with a hydrogenated titanium dioxide core and polyaniline shell.

The titanium dioxide acts as a double-layer electrostatic core. In electric double-layer capacitors, the electrical charge stored at the interface of a metal, and an electrolyte is used to construct a storage device.

The good conductivity of the hydrogenated titanium dioxide combined with the high pseudocapacity of polyaniline results in heightened overall capacitance and energy density while retaining power density and cycle life. Pseudocapacitance can increase the capacitance value of a supercapacitor by an order of magnitude over the double-layer’s capacitance.

3 thoughts on “Congratulations Eesha Khare!

  1. Pingback: Student Innovation Helping Make a Better World |

  2. Pingback: Weekend Coffee Links – The Brave Girls Edition | Cupcake n Sunshine

Leave a comment