Hydrogen Derived from Grass, Sunlight, and Nickel

A type of fescue grass in the UK, photo by T. Voekler via WikiMedia Commons

Another research university, another new chemical conversion. Yesterday we shared an innovative prototype system from Cornell to generate electricity, and today we learned via Eurekalert.org, “the global source for science news,” that hydrogen, a source of renewable energy, can be produced by the cellulose found in fescue grass during a chemical reaction with sunlight and a metal catalyst such as nickel, according to researchers from Cardiff University and Queen’s University in the UK:

It is the first time that this method has been demonstrated and could potentially lead to a sustainable way of producing hydrogen, which has enormous potential in the renewable energy industry due to its high energy content and the fact that it does not release toxic or greenhouse gases when it is burnt.

Co-author of the study Professor Michael Bowker, from the Cardiff Catalysis Institute, said: “This really is a green source of energy.”

“Hydrogen is seen as an important future energy carrier as the world moves from fossil fuels to renewable feedstocks, and our research has shown that even garden grass could be a good way of getting hold of it.”

The team, which also includes researchers from Queen’s University Belfast, have published their findings in the Royal Society journal Proceedings A.

Hydrogen is contained in enormous quantities all over in the world in water, hydrocarbons and other organic matter.

Up until now, the challenge for researchers has been devising ways of unlocking hydrogen from these sources in a cheap, efficient and sustainable way.

A promising source of hydrogen is the organic compound cellulose, which is a key component of plants and the most abundant biopolymer on Earth.

In their study, the team investigated the possibility of converting cellulose into hydrogen using sunlight and a simple catalyst — a substance which speeds up a chemical reaction without getting used up.

This process is called photoreforming or photocatalysis and involves the sunlight activating the catalyst which then gets to work on converting cellulose and water into hydrogen. The researchers studied the effectiveness of three metal-based catalysts — Palladium, Gold and Nickel.

Nickel was of particular interest to the researchers, from a practical point of view, as it is a much more earth-abundant metal than the precious metals, and is more economical.

In the first round of experiments, the researchers combined the three catalysts with cellulose in a round bottom flask and subjected the mixture to light from a desk lamp. At 30 minutes intervals the researchers collected gas samples from the mixture and analysed it to see how much hydrogen was being produced.

To test the practical applications of this reaction, the researchers repeated the experiment with fescue grass, which was obtained from a domestic garden.

Professor Michael Bowker continued: “Up until recently, the production of hydrogen from cellulose by means of photocatalysis has not been extensively studied.

Read Michael Bishop’s article for Eurekalert here, or if you have experience as a chemist, visit the original scientific article.

Leave a comment