Great EV Expectations

A Rivian R1T electric pickup truck at the company’s factory in Normal, Illinois. JAMIE KELTER DAVIS / BLOOMBERG VIA GETTY IMAGES

I had no reason to bet against Tesla until now, but I did wonder whether it was good for anyone (other than its shareholders) for that one company to dominate its market over the longer term. Now, happily, it looks like the market will do what we need it to do, which is get robust:

For U.S. Companies, the Race for the New EV Battery Is On

Spurred by federal mandates and incentives, U.S. manufacturers are pushing forward with developing new battery technologies for electric vehicles. The holy grail is a battery that is safer, costs less, provides longer driving range, and doesn’t use imported “conflict” minerals.

Sixteen years have passed since engineer Martin Eberhard unveiled his futuristic custom-designed sports car before a crowd of investors, journalists, and potential buyers in a Santa Monica Airport hangar. The Roadster, as it was called, contained a lot of innovative engineering, but nothing about it mattered more than the 6,831 lithium-ion battery cells packed into its rear compartment, which gave the vehicle its range and speed. “The battery system is the secret,” Eberhard explained at the time, “behind our four-second 0-60 mph acceleration.”

Eberhard and his collaborator, Marc Tarpenning, named their new electric vehicle company after Nikola Tesla, and two years later, in 2008, the Tesla became the first commercially produced, lithium-ion-powered vehicle to hit the auto market. Lithium-ion, or li-ion, was a big step up from the nickel-metal hydride (Ni-MH) batteries that had been powering most hybrid and electric vehicles, including the wildly popular Prius. Lithium’s better energy density means a li-ion battery can store a third more watt-hours per kilogram than Ni-MH batteries can, which means they last longer and weigh less.

But the lithium battery still has serious drawbacks. It relies on imported critical minerals — not just lithium, but cobalt, copper, graphite, and nickel — that are acquired by hacking into mountains or by pumping scarce desert groundwater into ponds, then waiting for water to evaporate and leave the mineral behind. The Democratic Republic of Congo produces more than 70 percent of the world’s cobalt, often by exploiting child labor under unsafe working conditions. Other minerals come from countries with which the United States would prefer to loosen economic ties, including Russia, which provides 20 percent of the world’s dwindling stores of nickel, and China, which supplies virtually all the graphite used in EV batteries internationally.

“We don’t necessarily have the ability to get some minerals unless we go to places that are defined as not acceptable,” says Ben Prochazka, executive director of the Electrification Coalition, a nonprofit that works to move transportation away from fossil fuels. Soon, we may not be able to get certain minerals at all: China, for instance, has threatened to keep its graphite for its own prodigious battery industry; market analysts predict the global demand for lithium will exceed supply by 2030. “We have got to figure out a different way of making batteries,” says Prochazka…

Read the whole article here.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s