Largest Lithium-ion Storage Battery for L.A.

Downtown Los Angeles and the San Gabriel Mountains via Wikimedia Commons

Our posts about solar power normally include some mention of the batteries involved, since that’s where the electricity is stored for actual domestic or commercial use. Lithium-ion batteries in particular are some of the more powerful ones on the market, but sustainable options are on our radar too. This week, we learned about the proposal for a set of over 18,000 lithium-ion batteries to be put together as a super-battery in Los Angeles to meet peak demand. John Fialka reports for Scientific American:

By 2021, electricity use in the west Los Angeles area may be in for a climate change-fighting evolution.

For many years, the tradition has been that on midsummer afternoons, engineers will turn on what they call a “peaker,” a natural gas-burning power plant In Long Beach. It is needed to help the area’s other power plants meet the day’s peak electricity consumption. Thus, as air conditioners max out and people arriving home from work turn on their televisions and other appliances, the juice will be there.

Five years from now, if current plans work out, the “peaker” will be gone, replaced by the world’s largest storage battery, capable of holding and delivering over 100 megawatts of power an hour for four hours. The customary afternoon peak will still be there, but the battery will be able to handle it without the need for more fossil fuels. It will have spent the morning charging up with cheap solar power that might have otherwise been wasted.

Early the next morning, the battery will be ready for a second peak that happens when people want hot water and, again, turn on their appliances. It has spent the night sucking up cheap power, most of it from wind turbines.

The politics for this to happen are now in place because California’s Public Utilities Commission set a target requiring utilities to build their capacity to store energy, to use more renewable energy and to cut the state’s greenhouse gas emissions 80 percent by 2050. The economics are there, too, because the local utility, Southern California Edison Co., picked the designer of the battery, AES Corp., an Arlington, Va., company, against 1,800 other offers to replace the peaker.

It was the first time an energy storage device had won a competition against a conventional power plant.

And the technology seems mature. AES has spent nine years working with manufacturers of electric-car batteries. It has learned how to assemble and control ever-bigger constellations of these lithium-ion batteries. The Long Beach facility, when it is completed, will have 18,000 battery modules, each the size of the power plant of the Nissan Leaf.

But the timing is terrible.


The mega-battery won’t be up and running for five years, and Southern California needs more energy storage capacity yesterday. Officials warn that this summer, the region could face as many as 14 days of scheduled blackouts because of a huge leak earlier this year at the Porter Ranch natural gas storage facility. While the leak has stopped, the facility—which feeds fuel to 17 Los Angeles-area power plants—may not be fully recovered and tested for months.

Meanwhile, other utilities are suddenly feeling the need to store substantial quantities of electricity. As John Zahurancik, president of AES’s energy storage company, put it, “It’s a bit of a Wild West open market right now.”

The United Kingdom is shopping for energy storage systems to be installed around London, and New York state, Hawaii and Chile are looking at energy storage as an alternative to building more expensive power plants.

What’s driving this scenario is a growing abundance of cheap solar and wind power and entrepreneurs looking for ways to store and sell more of it. Meanwhile, power projections of older coal- and gas-fired power plants are leading owners to shut more down, leaving more gaps in electricity distribution systems because they will no longer be able to compete with cheaper solar and wind power.

“We’re already caught up in the onset of a major transformation that’s going to happen. There are over a million solar rooftops now” in the United States, explained Guenter Conzelmann, a power sector analyst at the Department of Energy’s Argonne National Laboratory near Chicago.

Within two or three years, he estimates, there could be as many as 800,000 electric vehicles in the United States, an event that could drive prices for lithium-ion batteries further down and result in the storage of more renewable energy in the suburbs, at the edges of power systems that feed cities.

Car companies such as Tesla Motors Inc. are also offering big home batteries, close cousins of their car batteries, to store more renewable energy in homes. There are also “smart” appliances, such as dishwashers, water heaters, thermostats and refrigerators, coming into the market that are equipped to communicate with utilities to minimize electricity use during peak periods when electricity is most expensive.

“Eventually, homeowners could become almost energy self-sufficient. You may only need a few hours of electricity from the grid per year,” Conzelmann said.

Noting that the current power grid is not designed to handle big two-way power and communication flows, he suggests that more renewable energy will be beneficial and politically unstoppable.

“Everyone has an end vision. That’s pretty clear,” he said. “The problem is, how do we get there? That’s where a lot of the research that’s going on is all about. Can we have all these different attributes that we want without screwing up?”

Read the rest of the article here.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s