Bio-Based Gains

Scientists at San Diego-based Genomatica, which is developing a plant-based nylon. GENOMATICA

We have been watching and waiting for this range of products to have their day, and Jim Robbins delivers an up to date account that gives hope:

From Lab to Market: Bio-Based Products Are Gaining Momentum

A 3D-printed house made from sawdust and other timber industry waste by the University of Maine’s Advanced Structures and Composites Center. UNIVERSITY OF MAINE

Propelled by government investment and shareholder demand, manufacturers are pushing to get bio-based products into the marketplace. These new materials — made from plants, fungi, and microbes — aim to replace those that contain toxins and are difficult to recycle or reuse.

In the 1930s, the DuPont company created the world’s first nylon, a synthetic polymer made from petroleum. The product first appeared in bristles for toothbrushes, but eventually it would be used for a broad range of products, from stockings to blouses, carpets, food packaging, and even dental floss.

Nylon is still widely used, but, like other plastics, it has environmental downsides: it is made from a nonrenewable resource; its production generates nitrous oxide, a potent greenhouse gas; it doesn’t biodegrade; and it sheds microfibers that end up in food, water, plants, animals, and even the clouds.

Laminated timber beams and floors used in the construction of Ascent, a 25-story apartment building in Milwaukee. THORNTON TOMASETTI

Now, however, a San Diego-based company called Genomatica is offering an alternative: a so-called plant-based nylon made through biosynthesis, in which a genetically engineered microorganism ferments plant sugars to create a chemical intermediate that can be turned into nylon-6 polymer chips, and then textiles. The company has partnered with Lululemon, Unilever, and others to manufacture this and other bio-based products that safely decompose.

“We are at the start of a sustainable materials transition that will reinvent the products we use every day and where they come from,” says Christophe Schilling, Genomatica’s CEO.

Using living organisms to create safe materials that break down completely in the environment — where they can act as nutrients or feedstock for new growth — is just one example of a burgeoning global movement working toward a so-called bioeconomy. Its goal isn’t limited to replacing plastics but takes aim at all conventional synthetic products — including chemicals, concrete, and steel — that are toxic to make or use, difficult to recycle, and have outsize carbon footprints. In their place will come products made from plants, trees, or fungi — materials that, at their end of life, can be safely returned to the Earth or recycled again and again. The bioeconomy is still small, in the global scheme of things, but the push to turn successful research into manufactured products is growing, propelled by several factors.

First is widespread disgust at the mounting environmental toll of plastic, including the fact that people and animals are ingesting it. Second is a flood of funding, especially in the United States and Europe, to accelerate the transition away from products that are non-biodegradable, toxic, and that produce carbon emissions. Last September, President Biden signed an executive order, with funding of more than $2 billion, to launch the National Biotechnology and Biomanufacturing Initiative to support research and development efforts, including the use of sustainable biomass and waste resources to make non-toxic, bio-based fuels, chemicals, and fertilizers, and to build affordable housing.

And the Department of Defense recently funded what it calls a Manufacturing Innovation Institute called BioMADE, or the Bioindustrial Manufacturing and Design Ecosystem, a public-private partnership with its headquarters at the University of Minnesota. Bioindustrial manufacturing uses biological systems — including microbes like bacteria, yeast, and algae — to create new materials or alternatives to existing petroleum-based materials. Ongoing projects include the creation of a bacterium, made from byproducts of the dairy industry, that displaces petroleum-based propylene as the feedstock for acrylic acid, which is used to make vinyl, paint, adhesives, diapers, and other products, and a bacterium that safely kills pathogens in chickens, replacing antibiotics.

The U.S. Department of Agriculture is also a major player in this field. The agency recently announced it would allocate $41 million to develop new markets for products made from wood, and it has long managed the BioPreferred Program, which requires federal agencies and contractors to preferentially purchase products, including cleaners, carpets, lubricants, and paints, with minimum bio-based content. Among the products federal agencies are now using is a transformer coolant made from soybean oil that is 99 percent biodegradable in 21 days and Seventh Generation laundry detergent, which is made from 97 percent bio-based ingredients. While the bioeconomy concept has been around for a while, the surge of funding and interest has seeded a range of new facilities and projects. The University of Maine’s Advanced Structures and Composites Center just manufactured a completely recyclable house; the animal rights organization PETA runs the Material Innovation Initiative Center, which develops sustainable textiles without animal products. Oak Ridge National Laboratory has the Center for BioEnergy Innovation, which studies fuels made from plants and the bioenergy supply chain…

Read the whole article here.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s